Dhirubhai Ambani Institute of Information and Communication Technology

Ph.D.

Physics

Sample Question Paper

Physical constants and units

$G = 6.67 \times 10^{-11} \mathrm{m}^3 / \mathrm{kg} \mathrm{s}^2$	$g = 9.8 \mathrm{m/s^2}$
$\epsilon_0 = 8.85 \times 10^{-12} \text{C}^2 / \text{Nm}^2$	$\mu_0 = 4\pi \times 10^{-7} \mathrm{N/A^2}$
electron charge $e = 1.6 \times 10^{-19} \text{ C}$	Speed of light $c = 3 \times 10^8 \text{ m/sec}$
Planck's constant $h = 6.626 \times 10^{-34}$ joule-sec	Boltzmann's constant $k = 1.38 \times 10^{-23}$ joule/K
Stefan-Boltzmann constant	
$\sigma = 5.67 \times 10^{-8} \text{ W/ m}^2 \text{K}^4$	Wien's constant = 2.9×10^{-3} m K
Gas constant $R = 8.31441$ joule/mole K	Avogadro number $N = 6.023 \times 10^{23}$
Proton mass $m_p = 1.673 \times 10^{-27} kg = 1.007277 u$	Neutron mass $m_n = 1.675 \times 10^{-27} kg = 1.008665 u$
Electron mass $m_e = 9.109 \times 10^{-31} kg = 0.00055 u$	
1 Gauss = .0001 Tesla	$1 \text{eV} = 1.6 \times 10^{-19} \text{ joule}$
1 u (amu) = 931 MeV	$1\mathrm{A}^{\circ} = 10^{-10}\mathrm{m}$

- 1. The value of the integral $\int_0^a \int_0^a \delta(x-y) dx dy$ is
 - (A) 1
 - (B) a^2
 - (C) a
 - (D) ∞
 - (E) None of the above
- 2. Consider the following partial differential equation

$$\frac{\partial^2 \Phi(x,y)}{\partial x^2} + \frac{\partial^2 \Phi(x,y)}{\partial y^2} = 0$$

Which of the following is a solution to this equation:

- (A) $\sin k(x+y)$
- (B) $\sin(k_1x + k_2y) \ k_1 \neq k_2$
- (C) $e^{kx} \sin ky$
- (D) $e^{k(x+y)}$
- (E) None of the above
- 3. A box contains 1200 tokens numbered 1 to 1200. A token is drawn at random. It is found that the token number is a multiple of 3. Given this information what is the probability that the token number is also a multiple of 5.
 - (A) 1/6
 - (B) 1/5
 - (C) 1/15
 - (D) 1/3
 - (E) None of the above

4. Let
$$T : \mathbb{R}^3 \to \mathbb{R}^3$$
 be defined by $T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $T\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $T\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$ then

- (A) dim (kernel T) = 2
- (B) rank T = 0

(C) a basis of kernel T is $\left\{ \begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix} \right\}$

- (D) range $T = \mathbb{R}^3$
- (E) None of the above

5. If $z^8 = 1$ and in the set $\{1, z, z^2, z^3, z^4, z^5, z^6, z^7\}$ all the elements are distinct, then

- (A) $1, z^2, z^4, z^6$ are real
- (B) all the elements are real.
- (C) z, z^3, z^5 and z^7 are pure imaginary.
- (D) Only 1 and z^4 are real.
- (E) None of the above
- 6. The effective potential of a particle in a central force field is described by $V(r) = -\frac{5}{r} + \frac{4}{r^2}$. If the energy of a particle in this field is E = -1 then the nearest distance of the particle from the center of force is
 - (A) 3
 - (B) 2
 - (C) 4
 - (D) 1
 - (E) None of the above
- 7. A particle moves in a central force field with the center of force at the origin. If the velocity of the particle at \vec{r}_0 is \vec{v} then the trajectory of the particle is contained in the plane described by
 - (A) $(\vec{r} \times \vec{r}_0) \cdot \vec{v} = 0$
 - (B) $(\vec{r} \times \vec{v}) \cdot \vec{r}_0 = 0$
 - (C) $(\vec{r}_0 \times \vec{v}) \cdot \vec{r} = 0$
 - (D) $(\vec{r} \vec{r}_0) \cdot \vec{v} = 0$
 - (E) None of the above
- 8. The total momentum of a system of particles
 - (A) is equal to the momentum of the center of mass of the system.
 - (B) is equal to the total momentum of the particles in the center of mass of the system.

- (C) is equal to the sum of the momentum of the center of mass of the system and the total momentum of the particles in the center of mass of the system.
- (D) can change if the particles in the system exert force on each other.
- (E) None of the above.
- 9. The Lagrangian for a particle of mass m is given as $L = \frac{1}{2}m\dot{x}^2 mg(h x\sin\theta)$ where g and θ are constants. The equation of motion is
 - (A) $\ddot{x}\sin\theta = g$
 - (B) $\ddot{x} = g$
 - (C) $\dot{x}\sin\theta = gt$
 - (D) $\ddot{x} = q \sin \theta$
 - (E) None of the above
- 10. A particle is trapped in a box of length L. Then the expectation of its momentum in first excited state is:
 - (A) π/L
 - (B) 0
 - (C) Infinity
 - (D) $\sqrt{\frac{\pi}{L}}$
 - (E) None of the above
- 11. Suppose the position uncertainty of an electron is zero. Then it's momentum uncertainty is:
 - (A) 0
 - (B) Greater than $\hbar/2$
 - (C) Less tha $\hbar/2$
 - (D) Infinity
 - (E) None of the above
- 12. Consider two states $|\psi\rangle = 2i |\phi_1\rangle + a |\phi_2\rangle |\phi_3\rangle$ and $|\chi\rangle = 5 |\phi_1\rangle + 6 |\phi_2\rangle + 4 |\phi_3\rangle$ where $|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle$ are orthonormal to each other and a is a constant. Then $|\psi\rangle$ and $|\chi\rangle$ will be orthogonal if a is equal to:
 - (A) $\frac{2-5i}{3}$
 - (B) $\frac{1-5i}{3}$
 - (C) $\frac{2-5i}{4}$

 - (D) $\frac{3-5i}{2}$
 - (E) None of the above.
- 13. Consider the position operator x and the momentum operator p_x . Then using the result $[x, p_x] = i\hbar$, show that $[x^2, p_x] = ?:$
 - (A) $\frac{i\hbar}{2}$

- (B) $\sqrt{2}i\hbar x$
- (C) $2i\hbar x$
- (D) $-i\hbar x$
- (E) None of the above
- 14. Consider an atom as containing a point charge +Q at its center surrounded by a uniform volume distribution of negative charge -Q within a sphere of radius R. The magnitude of the electric field at a distance r from the center at a point inside the atom (r < R) is
 - (A) $\frac{Q}{4\pi\epsilon_0}\left(\frac{1}{r^2}-\frac{r}{R^3}\right)$
 - (B) $\frac{Q}{4\pi\epsilon_0}\left(\frac{1}{r^2}-\frac{r^2}{R^4}\right)$
 - (C) $\frac{Q}{4\pi\epsilon_0}\left(\frac{r}{R^3}-\frac{1}{r^2}\right)$
 - (D) $\frac{Q}{4\pi\epsilon_0}\left(\frac{r^2}{R^4}-\frac{1}{r^2}\right)$
 - (E) None of the above
- 15. An infinite conducting sheet has a surface charge density of 2 μ Cm⁻² on one side. How far apart are the equipotential surfaces whose potentials differ by 20 V?
 - (A) 177.1 μm
 - (B) 177.1mm
 - (C) 88.5 μm
 - (D) 88.5 mm
 - (E) None of the above
- 16. In a conducting medium,

$$\vec{H} = \frac{\vec{B}}{\mu_0} = y^2 z \hat{x} + 2(x+1)yz\hat{y} - (x+1)z^2\hat{z} \text{ Am}^{-1}$$

The current density \vec{J} at (1, 0, -3) is

- (A) $9\hat{y} \, \mathrm{Am}^{-2}$
- (B) $-4\hat{x} + 9\hat{y}$ Am⁻²
- (C) $9\hat{z} \text{ Am}^{-2}$
- (D) $-9\hat{y} \text{ Am}^{-2}$
- (E) None of the above
- 17. Given $\vec{E} = 30\pi \exp\left(10^8 t + kz\right) \hat{x} \text{ Vm}^{-1}$ and $\vec{B} = B_0 \exp\left(10^8 t + kz\right) \hat{y} \frac{N}{\text{Am}}$ in free space, $H_0 = B_0/\mu_0$ is given by
 - (A) $-\frac{1}{4}$ Am⁻¹
 - (B) $\frac{1}{4}$ Am⁻¹
 - (C) $-\frac{1}{2}$ Am⁻¹
 - (D) $\frac{1}{2}$ Am⁻¹

- (E) None of the above
- 18. Two containers of the same volume V contain ideal gasses A and B at the same pressure P and temperature T. The gasses are mixed and put in a container of volume V. Then which of the following is true about the pressure and temperature of the mixed gas?
 - (A) 2P and T
 - (B) 2P and 2T
 - (C) P and 2T
 - (D) P and T
 - (E) None of the above
- 19. The molar specific heat of an ideal gas under constant volume and constant pressure is C_V and C_P . When one mole of an ideal gas in a cylinder of volume V is heated from temperature T_1 to T_2 the heat supplied to the gas is
 - (A) $C_V(T_2 T_1)$
 - (B) $C_P(T_2 T_1)$
 - (C) $(C_V + R)(T_2 T_1)$ where R is the gas constant
 - (D) $(C_P C_V + R)(T_2 T_1)$ where R is the gas constant
 - (E) None of the above
- 20. The Maxwell-Boltzmann distribution of speed v of molecules of mass m at temperature T of a gas is given as $f(v) = A \left(\frac{m}{kT}\right)^{3/2} v^2 \exp\left(-\frac{1}{2} \frac{mv^2}{kT}\right)$, where A is a normalisation constant. The most probable value of v^2 is
 - (A) $\frac{2kT}{m}$
 - (B) $\frac{3kT}{2m}$
 - (C) $\frac{5kT}{2m}$

 - (D) $\frac{kT}{m}$
 - (E) None of the above